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Abstract

Adolescent-onset schizophrenia (AOS) is a severe neuropsychiatric disease associated with frequency-specific abnormalities
across distributed neural systems in a slow rhythm. Recently, functional magnetic resonance imaging (fMRI) studies have
determined that the global signal. (GS) is an important source of the local neuronal activity in 0.01-0.1 Hz frequency band.
However, it remains unknown whether the effects follow a specific spatially preferential pattern in different frequency bands in
schizophrenia. To address this issue, resting-state fMRI data from 39 drug-naive AOS patients and 31 healthy controls (HCs)
were used to assess the changes in GS topography patterns in the slow-4 (0.027-0.073 Hz) and slow-5 bands (0.01-0.027 Hz).
Results revealed that GS mainly affects the default mode network (DMN) in slow-4 and sensory regions in the slow-5 band
respectively, and GS has a stronger driving effect in the slow-5 band. Moreover, significant frequency-by-group interaction was
observed in the frontoparietal network. Compared with HCs, patients with AOS exhibited altered GS topography mainly located
in the DMN. Our findings demonstrated that the influence of the GS on brain networks altered in a frequency-specific way in
schizophrenia.
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default mode network (DMN) and task-positive network in
HCs (Wong et al. 2016; Wong et al. 2013). By analysis the
GS topology, Yang et al. found that the representation of the
GS in association regions and sensory regions is different, and
suggested the spatially specific changes may represent a dis-
ruption in basic brain functions in schizophrenia (Yang et al.
2016). Similar results were found in major depressive disorder
(Zhu et al. 2018). Moreover, Wang et al. further confirmed
that the influence of the GS on a distributed structure is dy-
namic in AOS (Wang et al. 2019). These studies suggest that
GS is an important source of the neuronal activity itself and
contains important clinical information on psychiatric
disorders.

Moreover, fMRI studies have revealed specific relation-
ships between distributed neural activity and frequency in
HCs and schizophrenia patients (Braun et al. 2018; Meda
et al. 2015). By analyzing the response to simulated tasks in
different frequency bands, Sun et al. found that the regions of
the visual cortex in HCs have frequency selectivity (Sun et al.
2007). Thereafter, frequency-dependent effects were found in
different brain regions (Gohel and Biswal 2015), brain net-
works (Esposito et al. 2013), and functional hubs (Wang et al.
2018b Meanwhile, frequency-dependent changes were found
in the amplitude of low-frequency oscillations(Hoptman et al.
2010; Yu et al. 2014), regional homogeneity (Yu et al. 2013)
and functional connectivity (FC) density (Ji et al. 2017) in
schizophrenia. Accumulating evidence suggests that consid-
ering the information of multiple frequency bands can better
distinguish disease characteristics (Chen et al. 2016).
However, studies about the frequency-specific characteristics
of GS topography in AOS are lacking.

The current study assessed whether the altered topography
of the GS in AOS is frequency specific. The FC method was
used to investigate the pattern of GS in AOS patients and HCs
at two frequency bands (slow-4: 0.027-0.08 Hz and slow-5:
0.01-0.027 Hz). Two-way analysis of covariance
(ANCOVA) was used for statistical analysis. Furthermore,
the relationship between the aberrance and clinical symptoms
was investigated to test the contributions of frequency-specific
alterations to the clinicopathology of AOS.

Materials and methods
Participants

A total of 39 first-episode patients with AOS and 31 healthy
volunteers were recruited from the Second Affiliated Hospital
of Xinxiang Medical University. All participants were aged
from 12 years to 18 years, right-handed Han Chinese, and had
received more than 6 years of formal education. The exclusion
criteria for all participants were as follows: (1) any past or
current neurological disorders or family history of hereditary
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neurological disorders; (2) history of head injury with loss of
consciousness; (3) alcohol or substance abuse; (4) claustro-
phobia; (5) and MRI contraindications. Patients need to fulfill
the following inclusion criteria: (1) DSM-IV-TR criteria for
schizophrenia (Diagnostic and Statistical Manual of Mental
Disorders, fourth edition text revision, American Psychiatric
Association, 2000) (Zheng et al. 2015) using the Kiddie
Schedule for Affective Disorders and Schizophrenia
(Kaufman et al. 1997); (2) no co-morbid Axis I diagnosis;
(3) duration of illness less than 2 years (Green and
Schildkraut 1995; Ram et al. 1992); (4) and no current or
previous antipsychotic medication. The clinical symptoms
were independently assessed by two experienced psychiatrists
using DSM-VI based structured interviews (SCID-I/Patient
version) (First et al. 1995; Kyriakopoulos et al. 2008). To
validate the initial diagnosis, we reassessed all patients
6 months after the initial diagnostic interview. The clinical
negative symptomatology was further evaluated using the
Positive and Negative Syndrome Scale (PANSS) (Kay et al.
1987). The fMRI data and clinical scales were collected after
the initial diagnosis and before the treatment.

The study was approved by the Ethics Committee of the
Second Affiliated Hospital of Xinxiang Medical University,
and all participants provided written informed consent with
the consent of their guardians before participating in our
experiment.

Neuroimaging data acquisition

All subjects were instructed to rest with their eyes closed, not
to think of anything in particular, and not to fall asleep during
the scan (Duan et al. 2020; Fan et al. 2020). fMRI data were
acquired on a 3 Tesla MRI system (Vision; Siemens
MAGNETOM Verio, Erlangen, Germany) equipped with a
high-speed gradient coil. The following parameters were used
for high resolution T1-weighted volumetric 3D images: repe-
tition time/echo time (TR/TE)=2530/2.43 ms, matrix =

256 x 256, flip angle=7°, voxel size=1x1x1 mm® and
158 slices without inter-slice gap. At the same locations as
those of the anatomical slices, the functional images were
collected transversely using an echo-planar imaging (EPI) se-
quence with the following settings: TR/TE =2000 ms/30 ms,
flipangle = 90733 slices, 64 x 64 matrix, 90° flip angle, field of
view = 220 x 220 mmz, interslice gap =0.6 mm, and voxel
size = 3.44x3.44x4 mm’Error! Digit expected.. For each
subject, 240 functional volumes were obtained.

Neuroimaging preprocessing

T1 images were segmented into WM, gray matter (GM), and
cerebrospinal fluid using the DARTEL algorithm in the
DPARSF toolbox. Then, the GM mask of each subject is
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resampled to 3 x 3 x 3mm” to ensure that all bold images on
both scanners are interpolated to the same resolution.

Preprocessing followed prior works (Ji et al. 2017; Power
et al. 2014) and was conducted using the SPM8 toolbox. The
initial 10 images were discarded (Wang et al. 2019). Images
were then realigned and corrected for slice timing differences.
Next, the functional images were normalized to Montreal
Neurological Institute (MNI) template (voxel size: 3 mm X
3 mm X% 3 mm). Notably, in the regression step, we used
multiple regression to model the time-varying BOLD signal
in each voxel, including the Friston 24 motion parameters,
cerebrospinal, and white matter signals. The GS was excluded
from the multiple regression model. The resulting images
were linearly detrended and filtered using a typical bandpass,
including the slow-5 bandpass (0.01-0.027 Hz) and slow-4
bandpass (0.027-0.073 Hz) (Gohel and Biswal 2015). Given
that resting-state FC is sensitive to minor head movements, we
calculated the mean frame-wise displacement (FD) to further
determine the comparability of head movement across groups.
Subsequently, the ‘bad’ time points, as well as their 1-back
and 2-forward time points, were removed from the time series
by employing a ‘scrubbing’ method with an FD threshold of
0.5 mm (Power et al. 2012).

Imaging data of four AOS patients and one healthy partic-
ipant were excluded due to large head motion (> 2 mm trans-
lation or > 2° rotation), leaving a total of 35 AOS patients and
30 HCs for the final analysis. Importantly, AOS and HCs did
not differ in the remaining time points (HC: 227.846.98;
AOS: 225.1 £ 6.72; mean = SD, p=0.09) and mean FD
(HC: 0.09 £ 0.05 AOS: 0.01 £ 0.03; mean+ SD, p =0.33)
after the “scrubbing”.

Global gray matter signal topography calculation

The GS topography was measured by using the FC method
(pairwise correlation between the GS time course and each
voxel time course) (Schoélvinck et al. 2010). The GS time
series for each subject was acquired by calculating the mean
preprocessed BOLD signal overall gray matter voxels for each
time point, explicitly excluding ventricles and white matter
signal(Wang et al. 2019; Yang et al. 2016; Yang et al.
2014). The correlation coefficients were then converted to z-
values using Fisher’s r-to-z transformation. In this work, the z-
value map is referred to as the topography of GS(Aguirre et al.
1997, Fox et al. 2009).

Statistical analyses

For each pattern, one-sample t test was performed for each
group. The significance level was set at p <0.05 (Gaussian
random field (GRF) corrected). Then, ANCOVA was con-
ducted in SPM8 with diagnosis (two levels: AOS and HC)
as a group factor and frequency band (two levels: slow-4

and slow-5) as a within-subject factor, and with age, gender
and FD as covariates. GRF correction was used for cluster-
level multiple comparisons correction (voxel significance
p<0.001, cluster significance: p <0.05, corrected) (Duan
et al. 2012; Li et al. 2016). Post-hoc, two-sample tests were
used on clusters that showed a significant effect of group and
band.

Brain regions that showed significant interaction ef-
fects were considered regions of interest (ROIs) for the
following analyses. ROIs were defined as 4 mm radius
spheres with the centre at the peak position of statistical
differences. Finally, Spearman rho correlation was cal-
culated between the FC in the regions that showed in-
teraction effects and PANSS scores.

Results
Demographics and clinical symptoms

AOS and HC did not differ in gender, age, and years of edu-
cation (Table 1).

Frequency-specific spatial localization of the GS

We first examined the frequency-specific spatial pattern
of the GS representation in AOS and HC groups. Then,
we computed voxel-wise correlations to the GS accord-
ing to earlier works (Fox et al. 2009). Strikingly, non-
uniform representation of the GS was observed across
the brain. The topography of the GS in both groups
showed significant frequency dependence (one-sample t
test, GRF corrected p <0.05) (Fig. 1).

Table 1  Demographic and clinical characteristics

Demographics, Mean (SD) AOS Control P value
N=35 N=30

Age(year) 15.5(1.8) 153(1.6) 0.57*

Gender(male/female) 20/15 13/17 0.27°

Education (years) 8.5 (1.48) 8.7(1.42) 0.605"

Duration of psychosis(months) 6.6 (6.4) — —

Handedness (right/left) 35/0 30/0 —

PANSS Positive Symptoms 20.42 (5.72) — —
PANSS Negative Symptoms 20.91 (8.41) — —
PANSS General Symptoms 33.28 (6.69) — —
PANSS Total Symptoms 74.62 (10.61) — —

P? -value was obtained by two-sample #-test.
P’ -value was obtained by x* two-tailed test.
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Table 2 Interaction between the frequency band and group factors revealed by two-way ANCOVA
Brain areas L/R Cluster size F-value Peak coordinate
voxels X Y V4
AOS>HC Inferior frontal gyrus, opercular L 54 12.31 —48 9 25
Middle frontal gyrus L 37 11.09 =30 24 60

The statistical significance level is corrected for multiple comparisons using GRF correction with (voxel significant p < 0.001, cluster significant p <
0.05). The peak coordinate is defined in MNI space. AOS, adolescent-onset schizophrenia; HC, healthy controls; ANCOVA, analysis of covariance; L,

left; R, right; MNI, Montreal Neurological Institute.

Interaction effect between the frequency band and
group

Remarkable frequency-by-group interaction effects were
found in the opercular part of the left inferior frontal gyrus
(F(1,124y=12.31) and left middle frontal gyrus (F(; 124)=
11.09) (Fig. 2, A). Post-hoc analysis revealed that FC in the
regions shown interaction effects were significantly lower in
the slow-5 band in AOS patients, but no significant effect was
detected in the slow-4 band (Fig. 2, B).

Main effect of the frequency band

We examined the effect of frequency band on the topography
of GS. The brain regions that showed a significant main effect
of frequency band were mainly located in the left inferior
temporal gyrus (F(; 124)=39.60), right superior temporal gy-
rus (F( 124)=51.46), right middle frontal gyrus (F; 124)=
26.48), orbital part of the left inferior frontal gyrus
(F1,124y=29.24), left precuneus (F(; 124)=46.45), right

Fig. 1 Frequency-specific spatial

localization of the GS for AOS

and HC groups. One-sample t

tests were performed for each

group in different frequency

bands. The significance level was

set at p < 0.05 (GRF Corrected) HC
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lingual gyrus (F(y.124y=17.92), and left cerebellar crus
1(F1.124y=34.71) (Fig. 3, A). Post-hoc analysis revealed that
the FC in the slow-4 band was lower than that in the slow-5
band (Table 3).

Main effect of the group

The main effect of the group was observed in the left superior
frontal gyrus, orbital part (F; 124y = 18.32), right middle tem-
poral gyrus (F(; 124y=22.07) and right precuneus (F; j24)=
15.38) (Fig. 3, B). Post-hoc analysis revealed that the AOS
patients showed significantly higher FC in the orbital frontal

cortex but lower FC in the middle temporal gyrus and
precuneus compared with the HCs (Table 4).

Correlation with clinical symptoms

No significant correlation was found between the altered FC
and PANSS scores in AOS.
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Fig. 2 The interaction between the frequency band and group (Fig. 2A).
The results were obtained by two-way ANCOVA and post-hoc test. We
found decreased FC in patients with AOS in the slow-5 band. No

Discussion

In this study, we used the FC method to investigate the
changes in the GS topography in AOS patients at two
frequency bands (slow-4 and slow-5). The representation
of GS is frequency-specific, mainly affect the DMN in
the slow-4 band and the sensory network in the slowS5.
Moreover, significant frequency-by-group interaction
was observed in the opercular part of the left inferior
frontal gyrus and left middle frontal gyrus. Besides, pa-
tients with AOS demonstrated impaired GS topography
mainly in the DMN. Our findings offered initial evi-
dence that the effect of GS on different networks is
frequency-specific, and the effect is altered in patients
with AOS.

Main effect of frequency
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significant difference in FC was observed between the groups in the
slow-4 band (Fig. 2B). FC, functional connectivity; AOS, adolescent-
onset schizophrenia; HC, healthy control (Table 2)

Frequency-specific GS topography within group

The current work showed a generally positive correlation be-
tween the GS and voxel-wise BOLD signals in the brain’s
gray matter in the slow-4 and slow-5 bands. In line with a
previous study, the topography of the GS in different frequen-
cy bands was indeed nonuniform and different (Yang et al.
2016). In the HC group, the GS topography was mainly in the
DMN and the inferior temporal gyrus in the slow-4 band,
while mainly in the sensory regions, visual network, and
frontoparietal network in the slow-5 band. In the AOS group,
the GS topography showed similar results but the distribution
was blurred. The current results were consistent with the pre-
vious study that the DMN emerged from the low rhythmic
mechanism and concentrated within ultra-low frequency,

Main effect of group
b

P - /\ \ = -
F value F value
53 {o

Fig. 3 The main effect of the frequency band factor. Statistical significance level is corrected for multiple comparisons using GRF correction (voxel

significance p < 0.001, cluster significance: p < 0.05, corrected)
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Table 3 The main effect of the frequency band revealed by two-way ANCOVA
Brain region LR Cluster size F-value Peak coordinate
voxels X Y z

slow4 < slow5 Inferior temporal gyrus L 235 39.60 —47 —37 —26
Superior temporal gyrus R 125 51.46 57 0 -11
Middle frontal gyrus R 121 26.28 48 18 39
Inferior frontal gyrus, orbital L 160 29.24 -20 25 =22
Precuneus L 141 46.45 -3 —60 69
Lingual gyrus L 320 17.92 -21 —49 -9
Cerebellar crus 1 L 101 34.71 —24 —36 =57

The statistical significance level is corrected for multiple comparisons using GRF correction with (voxel significant p <0.001, cluster significant p <
0.05). The peak coordinate is defined in MNI space. AOS, adolescent-onset schizophrenia; HC, healthy controls; ANCOVA, analysis of covariance; L,

left; R, right; MNI, Montreal Neurological Institute.

mainly in the slow-4 band (Gohel and Biswal 2015; Li et al.
2015; Wu et al. 2008). Moreover, the spectral features of
visual and sensorimotor systems were similar and showed
consistency of synchronization with the GS (Wu et al.
2008). The distinct patterns of the GS topography across the
frequency bands may be due to the natural frequency required
for the distinct brain regions in processing time-locked incom-
ing external stimuli versus internal maintenance and represen-
tation of parallel information (Buzséki and Draguhn 2004;
Yang et al. 2016). These results uncovered the underling dis-
ruption of neuronal signals in different frequency bands in
schizophrenia.

Frequency-dependent changes in the GS topography
in AOS

In patients with AOS, the GS topography is influenced by the
interaction between frequency band and disease. In particular,
the GS topography was significantly lower in the slow-5 band
but did not change significantly in the slow-4 band in the AOS
patients. Although the physiological mechanisms of slow-4
and slow-5 bands remain unclear, many neuroimaging studies
have found that the abnormalities in schizophrenia are fre-
quency sensitive(Thompson and Fransson 2015; Yu et al.
2014; Yu et al. 2013). For example, by using fMRI, Zuo

Table 4 The main effect of the group revealed by two-way ANCOVA

et al. found that different network activities have their own
unique frequencies in schizophrenia (Zuo et al. 2010).
Moreover, Markus et.al proposed that frequency-specific neu-
ronal correlations in large-scale cortical networks may be ‘fin-
gerprints’ of canonical neuronal computations underlying
cognitive processes(Siegel et al. 2012). Further evidence con-
firmed the presence of abnormal interaction between disease
and frequency in patients with schizophrenia (Meda et al.
2015; Mingoia et al. 2013; Yu et al. 2014). The current find-
ings demonstrated that the abnormal GS topography in AOS
was mainly in the slow-5 band. Compared with the slow-4
band, the slow-5 had a higher power and was more dominant
within the cerebral cortex(Han et al. 2011). However, the FC
in the slow-5 band was mainly localized within the subcortical
and sensory regions (Ji et al. 2017; Wu et al. 2008; Wu et al.
2016). In the AOS patients, nonspecific sensory and motor
neurological abnormalities were frequently reported, and
these abnormalities further affected disease development dur-
ing subsequent maturation (Hong et al. 2008; Kumperscak
2011). Our results were consistent with the previous hypoth-
esis that, each cortical area tended to preserve its own natural
frequency even when damaged (Rosanova et al. 2009).
Moreover, the area of the frontal lobe that exhibited inter-
action effect was mainly in the junction between the frontal
gyrus and the parietal lobe. The frontoparietal network allows

Brain region L/R Cluster size F-value Peak coordinate
voxels X Y V4
AOS>HC Superior frontal gyrus, orbital L 48 18.32 -8 56 -14
AOS <HC Middle temporal gyrus R 79 22.07 56 -4 -21
Precuneus R 37 15.38 12 —56 20

The statistical significance level is corrected for multiple comparisons using GRF correction with (voxel significant p < 0.001, cluster significant p <
0.05). The peak coordinate is defined in MNI space. AOS, adolescent-onset schizophrenia; HC, healthy controls; ANCOVA, analysis of covariance; L,

left; R, right; MNI, Montreal Neurological Institute.
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an individual to understand the action of others ‘from the
inside’ and gives the observer a first-person grasp of the motor
goals and intentions of other individuals (Rizzolatti and
Sinigaglia 2010; Zhang et al. 2019). Our results demonstrate
that the GS topography is frequency-specific in AOS and may
reflect the neuropathological mechanisms of the disruption in
gating information flow within the brain in schizophrenia.

Difference in the GS topography between groups

The spatial pattern of the GS representation was different be-
tween the AOS and HC groups. AOS patients exhibited in-
creased FC in the superior frontal gyrus, orbital part, and de-
creased FC in the middle temporal gyrus and precuneus rela-
tive to HCs. Our results indicate that the influence of the GS
on the DMN is changed in AOS. It is consistent with previous
studies that functional connectivity of the DMN is disrupted in
schizophrenia (Liao et al. 2018; Tang et al. 2013; van den
Heuvel and Fornito 2014; Wang et al. 2017). Moreover, the
DMN has been demonstrated to comprise multiple, dissociat-
ed components (Andrews-Hanna et al. 2010). The abnormal-
ities of the DMN vary from the component to component in
schizophrenia (Du et al. 2015; Hu et al. 2017). The current
findings support the hypothesis that the subsystem of the
DMN is altered in schizophrenia.

Limitation

The limitation of the current study should be considered. The
size of the sample in the current study is relatively small.
However, such a sample is feasible compared with the inci-
dence of AOS. Second, in the process of data collection, we
arranged the subjects to keep their eyes closed. Although a
series of measures were taken to ensure that the subjects did
not fall asleep, it is still a matter need to concern. We will
refine our design in future studies. Third, in the current study,
we chose a mild GRF theory for multiple comparison correc-
tion rather than the false discovery rate (FDR) correction,
which makes the current findings to be considered as
preliminary.

Conclusion

In this study, we investigated the spatial distribution of the GS
across the brain in AOS patients at specific frequency band.
This examination uncovered a strikingly frequency-dependent
relationship in GS representation in many brain regions.
Specially, regions with significant interaction mainly involved
the frontoparietal network. Furthermore, the influence of the
GS on the subsystem of the DMN is demonstrated altered in
AOS. Our observations demonstrate that the GS topography

in AOS is frequency-dependent and provide potential impli-
cations for exploring schizophrenia.
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